Package: cats (via r-universe)

September 1, 2024

September 1, 2024
Type Package
Title Cohort Platform Trial Simulation
Version 1.0.3
Author Elias Laurin Meyer [aut, cre], Peter Mesenbrink [ctb], Franz Koenig [ctb]
Maintainer Elias Laurin Meyer <elias.meyer@meduniwien.ac.at></elias.meyer@meduniwien.ac.at>
Description Cohort plAtform Trial Simulation whereby every cohort consists of two arms, control and experimental treatment. Endpoints are co-primary binary endpoints and decisions are made using either Bayesian or frequentist decision rules. Realistic trial trajectories are simulated and the operating characteristics of the designs are calculated.
License GPL-3
Encoding UTF-8
Depends R (>= $3.5.0$)
RoxygenNote 7.1.2
<pre>URL https://el-meyer.github.io/cats/, https://github.com/el-meyer/cats</pre>
<pre>BugReports https://github.com/el-meyer/cats/issues</pre>
Imports dplyr, purrr, ggplot2, plotly, tidyr, parallel, doParallel, foreach, openxlsx, forcats, epitools, zoo, mytnorm
Suggests knitr, rmarkdown, DT, gtools
Repository https://el-meyer.r-universe.dev
RemoteUrl https://github.com/el-meyer/cats
RemoteRef HEAD
RemoteSha 46b211d8c77fafaea6696e07f9416ec09d186184
Contents
make_decision_trial

2 make_decision_trial

Index 12

 $\begin{tabular}{ll} \it make_decision_trial & \it Checks whether decision criteria are met and updates trial results accordingly. \\ \end{tabular}$

Description

Given a res_list object, checks the supplied decision criteria and saves the results in the res_list file.

Usage

```
make_decision_trial(
  res_list,
 which_cohort,
 Bayes_Sup1 = NULL,
  Bayes_Fut1 = NULL,
 Bayes_Sup2 = NULL,
 Bayes_Fut2 = NULL,
 w = 0.5,
  analysis_number,
  beta_prior = 0.5,
  hist_lag,
  endpoint_number,
  analysis_time,
  dataset,
  hist_miss = TRUE,
  sharing_type,
)
```

Arguments

res_list	List item containing individual cohort trial results so far in a format used by the other functions in this package
which_cohort	Current cohort that should be evaluated
Bayes_Sup1	List of matrices with rows corresponding to number of multiple Bayesian posterior two-arm combination criteria for superiority of histology endpoint 1
Bayes_Fut1	List of matrices with rows corresponding to number of multiple Bayesian posterior two-arm combination criteria for futility of histology endpoint 1
Bayes_Sup2	List of matrices with rows corresponding to number of multiple Bayesian posterior two-arm combination criteria for superiority of histology endpoint 2
Bayes_Fut2	List of matrices with rows corresponding to number of multiple Bayesian posterior two-arm combination criteria for futility of histology endpoint 2
W	If dynamic borrowing, what is the prior choice for w. Default is 0.5.

make_decision_trial 3

```
analysis_number
                  1st, second or third analysis?
beta_prior
                  Prior parameter for all Beta Distributions. Default is 0.5.
hist_lag
                  Histology Lag
endpoint_number
                  Should histology endpoint 1 or 2 be evaluated?
analysis_time
                  Platform Time of Analysis
dataset
                  Dataset to be used for analysis
hist_miss
                  Whether or not to exclude missing histology data
                  Type of Data Sharing to perform
sharing_type
                  Further arguments inherited from simulate_trial
```

Value

List containing original res_list and results of decision rules

Examples

```
# Example 1
# Initialize empty data frame
cols <- c("PatID", "ArrivalTime", "Cohort", "Arm", "RespHist1", "RespHist2", "HistMissing")</pre>
df <- matrix(nrow = 100, ncol = length(cols))</pre>
colnames(df) <- cols</pre>
df <- as.data.frame(df)</pre>
df$PatID <- 1:100
df$ArrivalTime <- sort(runif(100, min = 0, max = 5))</pre>
df$Cohort <- sample(1:2, 100, replace = TRUE)</pre>
df$Arm <- sample(c("Combo", "Plac"), 100, replace = TRUE)</pre>
df$RespHist1 <- sample(0:1, 100, replace = TRUE)</pre>
df$RespHist2 <- sample(0:1, 100, replace = TRUE)</pre>
df$HistMissing <- sample(0:1, 100, replace = TRUE, prob = c(0.95, 0.05))
# Initialize res_list Object
res_list <-
rep(
  list(
    list(
      Meta = list(
        decision = rep("none", 3),
        decision_hist1 = rep("none", 3),
        decision_hist2 = rep("none", 3),
        start_n = 0,
        start_time = 0,
        pat_enrolled = 0
      ),
      Arms = rep(
        list(
```

4 make_decision_trial

```
list(
            rr = NULL,
            hist_observed = 0
          )
        ),
       2
     )
   )
  ),
  2
)
arm_names <- c("Comb", "Plac")</pre>
for (i in 1:2) {
  names(res_list)[i] <- paste0("Cohort", i)</pre>
  names(res_list[[i]]$Arms) <- arm_names</pre>
  res_list[[i]]Arms\\Comb\\rr <- matrix(c(0.2, 0.2), ncol = 2)
  res_list[[i]]\Lambda - \pi \Plac\Gamma < - \pi \C(0.1, 0.1), ncol = 2)
}
sharing_type <- "all"</pre>
analysis_number <- 3</pre>
which_cohort <- 1
endpoint_number <- 2</pre>
hist_lag <- 1
analysis_time <- 6
# Comparison IA1
Bayes_Sup11 <- matrix(nrow = 2, ncol = 2)</pre>
Bayes_Sup11[1,] <- c(0.00, 0.95)
Bayes_Sup11[2,] <- c(0.10, 0.80)
# Comparison IA2
Bayes_Sup12 <- matrix(nrow = 2, ncol = 2)
Bayes_Sup12[1,] <- c(0.00, 0.95)
Bayes_Sup12[2,] <- c(NA, NA)
# Comparison IA3
Bayes_Sup13 <- matrix(nrow = 2, ncol = 2)
Bayes_Sup13[1,] <- c(0.00, 0.95)
Bayes_Sup13[2,] <- c(0.10, 0.80)
Bayes_Sup1 <- Bayes_Sup2 <- list(list(Bayes_Sup11), list(Bayes_Sup12), list(Bayes_Sup13))</pre>
# DO NOT RUN
res_list2 <-
make_decision_trial(
res_list = res_list, which_cohort = which_cohort,
analysis_number = analysis_number, endpoint_number = endpoint_number,
Bayes_Sup1 = Bayes_Sup1, Bayes_Sup2 = Bayes_Sup2,
dataset = df, analysis_time = analysis_time, hist_lag = hist_lag,
sharing_type = sharing_type
```

)

simulate_trial

Simulates the cohort trial.

Description

Simulates the cohort trial.

Usage

```
simulate_trial(
  n_fin,
  cohorts_start = 1,
  composite = "or",
  rr_comb1,
  rr_plac1,
  rr_comb2,
  rr_plac2,
  random\_type = NULL,
  random = FALSE,
  correlation,
  prob_comb1_rr = NULL,
  prob_plac1_rr = NULL,
  prob\_comb2\_rr = NULL,
  prob_plac2_rr = NULL,
  stage_data = FALSE,
  cohort_random = NULL,
  cohorts_max = 4,
  sr_drugs_pos = 1,
  sr_pats = cohorts_max * (n_fin + 3 * cohorts_max),
  sr_first_pos = FALSE,
  cohort_offset = 0,
  sharing_type = "all",
  safety_prob = 0,
  cohorts_sim = Inf,
 missing_prob = 0,
  cohort_fixed = NULL,
  accrual_type = "fixed",
  accrual_param = 9,
  hist_lag = 48,
  analysis_times = c(0.5, 0.75, 1),
  time_trend = time_trend,
)
```

Arguments

n_fin Sample size per cohort at final Number of cohorts to start the platform with cohorts_start Rule for deriving the composite endpoint. By default "or", otherwise "and" composite Response rates of treatment, histology endpoint 1 rr_comb1 rr_plac1 Response rate of the SoC, histology endpoint 1 rr_comb2 Response rates of treatment, histology endpoint 2 rr_plac2 Response rate of the SoC, histology endpoint 2 random_type How should the response rates be drawn randomly? Options are: "absolute": Specify absolute response rates that will be drawn with a certain probability "risk_difference": Specify absolute response rates for placebo which will be drawn randomly, plus specify vectors for absolute treatment effects of mono therapies over placebo and for combo over the mono therapies. "risk ratio": Specify absolute response rates for placebo which will be drawn randomly, plus specify vectors for relative treatment effects of mono therapies over placebo and for combo over the mono therapies. "odds ratios": Specify response rate for placebo, specify odds-ratios for mono therapies (via rr_back and rr_mono) and respective probabilities. On top, specify interaction for the combination therapy via rr_comb with prob_rr_comb. Set: odds_combo = odds_plac * or_mono1 * or_mono2 * rr_comb. If rr_comb > 1 -> synergistic, if rr_comb = 1 -> additive. If rr_comb < 1 -> antagonistic. Default is "NULL". Should the response rates of the arms be randomly drawn from rr_exp? Default random is FALSE. correlation Correlation between histology endpoints If random == TRUE, what are the probabilities with which the elements of prob_comb1_rr rr comb1 should be drawn? If random == TRUE, what are the probabilities with which the elements of prob_plac1_rr rr_plac1 should be drawn? If random == TRUE, what are the probabilities with which the elements of prob_comb2_rr rr comb2 should be drawn? If random == TRUE, what are the probabilities with which the elements of prob_plac2_rr rr plac2 should be drawn? stage_data Should individual stage data be passed along? Default is TRUE If not NULL, indicates that new arms/cohorts should be randomly started. For cohort_random every timestep, there is a cohort_random probability that a new cohort will be started. Maximum number of cohorts that are allowed to be added throughout the trial cohorts_max Stopping rule for successful experimental arms; Default = 1 sr_drugs_pos sr_pats Stopping rule for total number of patients; Default = cohorts max * n fin + error term based on randomization

sr_first_pos	Stopping rule for first successful cohort; if TRUE, after first cohort was found to be successful, no further cohorts will be included but cohorts will finish evaluating, unless other stopping rules reached prior. Default is FALSE.
cohort_offset	Minimum number of time between adding new cohorts
sharing_type	Which backbone and placebo data should be used for arm comparisons; Default is "all". Another option is "concurrent" or "dynamic" or "cohort".
safety_prob	Probability for a random stopping after every patient
cohorts_sim	Maximum number of cohorts that can run simultaneously
missing_prob	Probability for a missing value at final (independent of treatment)
cohort_fixed	If not NULL, fixed timesteps after which a cohort will be included
accrual_type	Type of patient accrual; choices are "fixed", "poisson" or "exponential"
accrual_param	Parameter used for patient accrual
hist_lag	Time until histology outcome is observed
analysis_times	Vector of information fractions needed for first interim, second interim and final
time_trend	Additive term by which response rates increase at every time step
• • •	Further arguments to be passed to decision function, such as decision making criteria

Value

List containing: Responses and patients on experimental and control arm, total treatment successes and failures and final p-value

Examples

```
random <- TRUE
rr_comb1 <- 0.10
prob_comb1_rr <- 1</pre>
rr_comb2 <- 0.45
prob_comb2_rr <- 1</pre>
rr_plac1 <- 0.10
prob_plac1_rr <- 1</pre>
rr_plac2 <- 0.20
prob_plac2_rr <- 1</pre>
correlation <- 0.8
cohorts_start <- 2</pre>
cohorts_max <- 5</pre>
safety_prob <- 0</pre>
sharing_type <- "concurrent"</pre>
sr_drugs_pos <- 5</pre>
sr_first_pos <- FALSE</pre>
n_fin <- 100
stage_data <- TRUE</pre>
cohort_random <- 0.01</pre>
```

```
cohort_offset <- 0</pre>
cohorts_sim <- Inf
random_type <- "absolute"</pre>
missing_prob <- 0.2
cohort_fixed <- 5</pre>
hist_lag <- 48
analysis_times <- c(0.5, 0.75, 1)
accrual_type <- "fixed"</pre>
accrual_param <- 9
time_trend <- 0.001
composite <- "or"
# Comparison IA1
Bayes_Sup11 <- matrix(nrow = 2, ncol = 2)
Bayes_Sup11[1,] <- c(0.00, 0.95)
Bayes_Sup11[2,] <- c(0.10, 0.80)
# Comparison IA2
Bayes_Sup12 <- matrix(nrow = 2, ncol = 2)
Bayes_Sup12[1,] <- c(0.00, 0.95)
Bayes_Sup12[2,] <- c(0.10, 0.80)
# Comparison IA3
Bayes_Sup13 <- matrix(nrow = 2, ncol = 2)</pre>
Bayes_Sup13[1,] <- c(0.00, 0.95)
Bayes_Sup13[2,] <- c(0.10, 0.80)
Bayes_Sup1 <- Bayes_Sup2 <- list(list(Bayes_Sup11), list(Bayes_Sup12), list(Bayes_Sup13))
# Comparison IA1
Bayes_Fut11 <- matrix(nrow = 1, ncol = 2)</pre>
Bayes_Fut11[1,] <- c(0.00, 0.20)
# Comparison IA2
Bayes_Fut12 <- matrix(nrow = 1, ncol = 2)
Bayes_Fut12[1,] <- c(0.00, 0.30)
# Comparison IA3
Bayes_Fut13 <- matrix(nrow = 1, ncol = 2)</pre>
Bayes_Fut13[1,] <- c(NA, NA)</pre>
# Endpoint 1+2
Bayes_Fut1 <- Bayes_Fut2 <- list(list(Bayes_Fut11), list(Bayes_Fut12), list(Bayes_Fut13))
simulate_trial(
n_fin = n_fin, random_type = random_type, composite = composite,
 rr_comb1 = rr_comb1, rr_comb2 = rr_comb2, rr_plac1 = rr_plac1, rr_plac2 = rr_plac2,
 random = random, prob_comb1_rr = prob_comb1_rr, prob_comb2_rr = prob_comb2_rr,
prob_plac1_rr = prob_plac1_rr, prob_plac2_rr = prob_plac2_rr, correlation = correlation,
 stage_data = stage_data, cohort_random = cohort_random, cohorts_max = cohorts_max,
 sr_drugs_pos = sr_drugs_pos, sharing_type = sharing_type, Bayes_Fut1 = Bayes_Fut1,
 safety_prob = safety_prob, Bayes_Sup1 = Bayes_Sup1, Bayes_Sup2 = Bayes_Sup2,
 cohort_offset = cohort_offset, sr_first_pos = sr_first_pos, Bayes_Fut2 = Bayes_Fut2,
 missing_prob = missing_prob, cohort_fixed = cohort_fixed, accrual_type = accrual_type,
 accrual_param = accrual_param, hist_lag = hist_lag, analysis_times = analysis_times,
 time_trend = time_trend, cohorts_start = cohorts_start, cohorts_sim = cohorts_sim
```

trial_ocs 9

trial_ocs	Calculates the operating characteristics of the cohort trial

Description

Given the trial specific design parameters, performs a number of simulations of the trial and saves the result in an Excel file

Usage

```
trial_ocs(
   iter,
   coresnum = 1,
   save = FALSE,
   path = NULL,
   filename = NULL,
   ret_list = FALSE,
   ret_trials = FALSE,
   plot_ocs = FALSE,
   export = NULL,
   ...
)
```

Arguments

iter	Number of program simulations that should be performed
coresnum	How many cores should be used for parallel computing
save	Indicator whether simulation results should be saved in an Excel file
path	Path to which simulation results will be saved; if NULL, then save to current path
filename	Filename of saved Excel file with results; if NULL, then name will contain design parameters
ret_list	Indicator whether function should return list of results
ret_trials	Indicator whether individual trial results should be saved as well
plot_ocs	Should OCs stability plots be drawn?
export	Should any other variables be exported to the parallel tasks?
	All other design parameters for chosen program

Value

List containing: Responses and patients on experimental and control arm, total treatment successes and failures and final p-value

10 trial_ocs

Examples

```
random <- TRUE
rr_comb1 <- 0.25
prob_comb1_rr <- 1</pre>
rr_comb2 <- 0.20
prob_comb2_rr <- 1</pre>
rr_plac1 <- 0.10
prob_plac1_rr <- 1</pre>
rr_plac2 <- 0.10
prob_plac2_rr <- 1</pre>
correlation <- 0.8
cohorts_start <- 2</pre>
cohorts_max <- 5</pre>
safety_prob <- 0</pre>
sharing_type <- "concurrent"</pre>
sr_drugs_pos <- 5</pre>
sr_first_pos <- FALSE</pre>
n_fin <- 100
stage_data <- TRUE</pre>
cohort_random <- 0.01</pre>
cohort_offset <- 0</pre>
cohorts_sim <- Inf</pre>
random_type <- "absolute"</pre>
missing_prob <- 0.2
cohort_fixed <- 5</pre>
hist_lag <- 48
analysis_times <- c(0.5, 0.75, 1)
accrual_type <- "fixed"</pre>
accrual_param <- 9</pre>
time\_trend <- 0.001
composite <- "or"</pre>
# Comparison IA1
Bayes_Sup11 <- matrix(nrow = 2, ncol = 2)</pre>
Bayes_Sup11[1,] <- c(0.00, 0.95)
Bayes_Sup11[2,] <- c(0.10, 0.80)
# Comparison IA2
Bayes_Sup12 <- matrix(nrow = 2, ncol = 2)
Bayes_Sup12[1,] <- c(0.00, 0.95)
Bayes_Sup12[2,] <- c(0.10, 0.80)
# Comparison IA3
Bayes_Sup13 <- matrix(nrow = 2, ncol = 2)
Bayes_Sup13[1,] <- c(0.00, 0.95)
Bayes_Sup13[2,] <- c(0.10, 0.80)
Bayes_Sup1 <- Bayes_Sup2 <- list(list(Bayes_Sup11), list(Bayes_Sup12), list(Bayes_Sup13))</pre>
ocs <- trial_ocs(</pre>
n_fin = n_fin, random_type = random_type, composite = composite,
```

trial_ocs 11

```
rr_comb1 = rr_comb1, rr_comb2 = rr_comb2, rr_plac1 = rr_plac1, rr_plac2 = rr_plac2,
random = random, prob_comb1_rr = prob_comb1_rr, prob_comb2_rr = prob_comb2_rr,
prob_plac1_rr = prob_plac1_rr, prob_plac2_rr = prob_plac2_rr,
stage_data = stage_data, cohort_random = cohort_random, cohorts_max = cohorts_max,
sr_drugs_pos = sr_drugs_pos, sharing_type = sharing_type, correlation = correlation,
safety_prob = safety_prob, Bayes_Sup1 = Bayes_Sup1, Bayes_Sup2 = Bayes_Sup2,
cohort_offset = cohort_offset, sr_first_pos = sr_first_pos,
missing_prob = missing_prob, cohort_fixed = cohort_fixed, accrual_type = accrual_type,
accrual_param = accrual_param, hist_lag = hist_lag, analysis_times = analysis_times,
time_trend = time_trend, cohorts_start = cohorts_start, cohorts_sim = cohorts_sim,
iter = 2, coresnum = 1, save = FALSE, ret_list = TRUE, plot_ocs = TRUE
)
```

Index

```
make_decision_trial, 2
simulate_trial, 5
trial_ocs, 9
```